Low-Voltage CMOS 16-Bit Buffer

With 5 V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX16244 is a high performance, non–inverting 16–bit buffer operating from a 2.3 to 3.6 V supply. The device is nibble controlled. Each nibble has separate Output Enable inputs which can be tied together for full 16–bit operation. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A $V_{\rm I}$ specification of 5.5 V allows MC74LCX16244 inputs to be safely driven from 5V devices. The MC74LCX16244 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

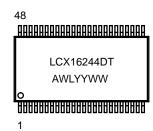
The 4.5 ns maximum propagation delays support high performance applications. Current drive capability is 24 mA at the outputs. The Output Enable (\overline{OEn}) inputs, when HIGH, disable the outputs by placing them in a HIGH Z condition.

The MC74LCX16244 contains sixteen non–inverting buffers with 3–state 5 V–tolerant outputs. The device is nibble controlled with each nibble functioning identically, but independently. The control pins may be tied together to obtain full 16–bit operation. The 3–state outputs are controlled by an Output Enable (\overline{OEn}) input for each nibble. When \overline{OEn} is LOW, the outputs are on. When \overline{OEn} is HIGH, the outputs are in the high impedance state.

- Designed for 2.3 to 3.6 V V_{CC} Operation
- 4.5 ns Maximum t_{pd}
- 5 V Tolerant Interface Capability With 5 V TTL Logic
- Supports Live Insertion and Withdrawal
- I_{OFF} Specification Guarantees High Impedance When $V_{CC} = 0$ V
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (20 μA)
 Substantially Reduces System Power Requirements

1

- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000 V; Machine Model >200 V

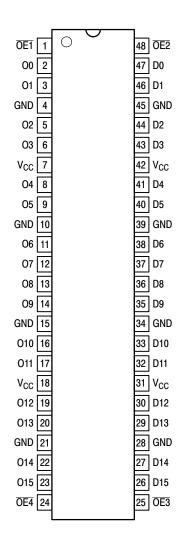

ON Semiconductor™

http://onsemi.com

MARKING DIAGRAM

TSSOP-48 DT SUFFIX CASE 1201-01

A = Assembly Location


WL = Wafer Lot

YY = Year

WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MC74LCX16244DT	TSSOP-48	39 Units/Rail
MC74LCX16244DTR2	TSSOP-48	2500 Units/Reel

PIN NAMES

PINS	FUNCTION
OEn	Output Enable Inputs
D0-D15	Inputs
00 – 015	Outputs

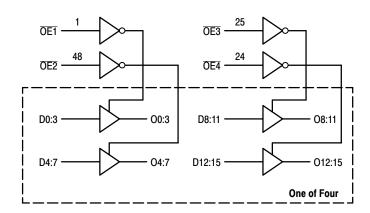


Figure 2. Logic Diagram

Figure 1. Pinout: 48-Lead (Top View)

TRUTH TABLE

OE1	D0:3	O0:3	OE2	D4:7	04:7	OE3	D8:11	O8:11	OE4	D12:15	O12:15
L	L	L	L	L	L	L	L	L	L	L	L
L	Н	Н	L	Н	Н	L	Н	Н	L	Н	Н
Н	Х	Z	Н	Х	Z	Н	Х	Z	Н	Х	Z

 $H = High Voltage Level; L = Low Voltage Level; Z = High Impedance State; X = High or Low Voltage Level and Transitions Are Acceptable, for <math>I_{CC}$ reasons, DO NOT FLOAT Inputs.

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \le V_1 \le +7.0$		V
Vo	DC Output Voltage	$-0.5 \le V_0 \le +7.0$	Output in 3–State	V
		$-0.5 \le V_{O} \le V_{CC} + 0.5$	Output in HIGH or LOW State (Note 1.)	V
I _{IK}	DC Input Diode Current	- 50	V _I < GND	mA
I _{OK}	DC Output Diode Current	- 50	V _O < GND	mA
		+50	V _O > V _{CC}	mA
Io	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C

^{*} Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute—maximum—rated conditions is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit
V _{CC}	Supply Voltage	Operating Data Retention Only	2.0 1.5	2.5, 3.3 2.5, 3.3	3.6 3.6	V
VI	Input Voltage		0		5.5	V
Vo	Output Voltage	(HIGH or LOW State) (3–State)	0 0		V _{CC} 5.5	V
I _{OH}	HIGH Level Output Current	$V_{CC} = 3.0 \text{ V} - 3.6 \text{ V}$ $V_{CC} = 2.7 \text{ V} - 3.0 \text{ V}$ $V_{CC} = 2.3 \text{ V} - 2.7 \text{ V}$			- 24 - 12 - 8	mA
I _{OL}	LOW Level Output Current	$V_{CC} = 3.0 \text{ V} - 3.6 \text{ V}$ $V_{CC} = 2.7 \text{ V} - 3.0 \text{ V}$ $V_{CC} = 2.3 \text{ V} - 2.7 \text{ V}$			+ 24 + 12 + 8	mA
T _A	Operating Free–Air Temperature		-40		+85	°C
Δt/ΔV	Input Transition Rise or Fall Rate, V_{II} $V_{CC} = 3.0 \text{ V}$	N from 0.8 V to 2.0 V,	0		10	ns/V

^{1.} I_O absolute maximum rating must be observed.

DC ELECTRICAL CHARACTERISTICS

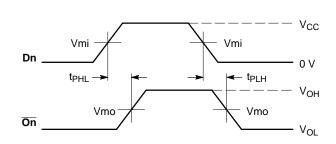
			T _A = -40°C		
Symbol	Characteristic	Condition	Min	Max	Unit
V _{IH}	HIGH Level Input Voltage (Note 2.)	2.3 V ≤ V _{CC} ≤ 2.7 V	1.7		V
		2.7 V ≤ V _{CC} ≤ 3.6 V	2.0		
V _{IL}	LOW Level Input Voltage (Note 2.)	2.3 V ≤ V _{CC} ≤ 2.7 V		0.7	V
		2.7 V ≤ V _{CC} ≤ 3.6 V		0.8	
V _{OH}	HIGH Level Output Voltage	$2.3 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}; \text{I}_{OL} = 100 \mu\text{A}$	V _{CC} - 0.2		V
		$V_{CC} = 2.3 \text{ V; } I_{OH} = -8 \text{ mA}$	1.8		1
		$V_{CC} = 2.7 \text{ V}; I_{OH} = -12 \text{ mA}$	2.2		
		$V_{CC} = 3.0 \text{ V}; I_{OH} = -18 \text{ mA}$	2.4		
		V _{CC} = 3.0 V; I _{OH} = -24 mA	2.2		1
V _{OL}	LOW Level Output Voltage	$2.3 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}; \text{I}_{OL} = 100 \mu\text{A}$		0.2	V
		V _{CC} = 2.3 V; I _{OL} = 8 mA		0.6	1
		V _{CC} = 2.7 V; I _{OL} = 12 mA		0.4	
		V _{CC} = 3.0 V; I _{OL} = 16 mA		0.4	1
		V _{CC} = 3.0 V; I _{OL} = 24 mA		0.55	
I _I	Input Leakage Current	$2.3 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}; 0 \text{ V} \le \text{V}_{I} \le 5.5 \text{ V}$		±5.0	μΑ
l _{OZ}	3-State Output Current	$2.3 \le V_{CC} \le 3.6 \text{ V}; \text{ 0V} \le V_{O} \le 5.5 \text{ V};$ $V_{I} = V_{IH} \text{ or V }_{IL}$		±5.0	μΑ
I _{OFF}	Power-Off Leakage Current	$V_{CC} = 0 \text{ V}; V_{I} \text{ or } V_{O} = 5.5 \text{ V}$		10	μΑ
I _{CC}	Quiescent Supply Current	$2.3 \le V_{CC} \le 3.6 \text{ V}; V_I = \text{GND or } V_{CC}$		20	μΑ
		$2.3 \le V_{CC} \le 3.6 \text{ V}$; $3.6 \le V_I \text{ or } V_O \le 5.5 \text{ V}$		±20	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$2.3 \le V_{CC} \le 3.6 \text{ V}; V_{IH} = V_{CC} - 0.6 \text{ V}$		500	μΑ

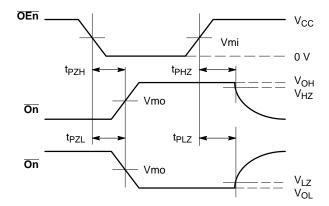
^{2.} These values of V_I are used to test DC electrical characteristics only.

AC CHARACTERISTICS $t_R=t_F$ = 2.5 ns; R_L = 500 Ω

					Lir	nits			Unit
					T _A = -40°	C to +85°C			
			V _{CC} = 3.3	3 V ± 0.3 V	V _{CC} =	= 2.7 V	V _{CC} = 2.5	5 V ± 0.2 V	
			C _L =	50 pF	C _L =	50 pF	C _L =	30 pF	
Symbol	Parameter	Waveform	Min	Max	Min	Max	Min	Max	
t _{PLH} t _{PHL}	Propagation Delay Input to Output	1	1.5 1.5	4.5 4.5	1.5 1.5	5.2 5.2	1.5 1.5	5.4 5.4	ns
t _{PZH} t _{PZL}	Output Enable Time to High and Low Level	2	1.5 1.5	5.5 5.5	1.5 1.5	6.3 6.3	1.5 1.5	7.2 7.2	ns
t _{PHZ} t _{PLZ}	Output Disable Time From High and Low Level	2	1.5 1.5	5.4 5.4	1.5 1.5	5.7 5.7	1.5 1.5	6.5 6.5	ns
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 3.)			1.0 1.0					ns

Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
 The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

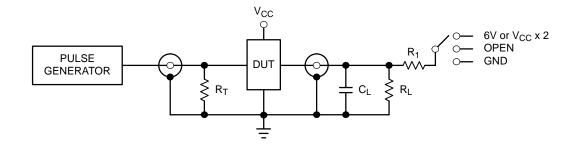

DYNAMIC SWITCHING CHARACTERISTICS


			T _A = +25°C			
Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{OLP}	Dynamic LOW Peak Voltage (Note 4.)	$V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ $V_{CC} = 2.5 \text{ V}, C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$		0.8 0.6		V V
V _{OLV}	Dynamic LOW Valley Voltage (Note 4.)	$\begin{aligned} & V_{CC} = 3.3 \; V, \; C_{L} = 50 \; pF, \; V_{IH} = 3.3 \; V, \; V_{IL} = 0 \; V \\ & V_{CC} = 2.5 \; V, \; C_{L} = 30 \; pF, \; V_{IH} = 2.5 \; V, \; V_{IL} = 0 \; V \end{aligned}$		-0.8 -0.6		V V

^{4.} Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	$V_{CC} = 3.3 \text{ V}, V_I = 0 \text{ V or } V_{CC}$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3 \text{ V}, V_I = 0 \text{ V or } V_{CC}$	8	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	20	pF



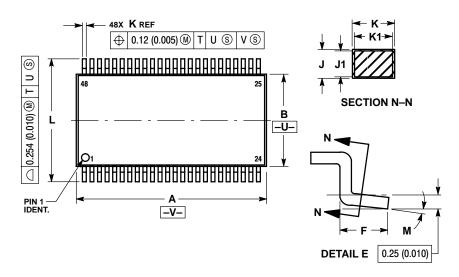
WAVEFORM 1 – PROPAGATION DELAYS $t_R = t_F = 2.5 \text{ ns}, 10\% \text{ to } 90\%; f = 1 \text{ MHz}; t_W = 500 \text{ ns}$

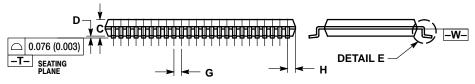
WAVEFORM 2 – OUTPUT ENABLE AND DISABLE TIMES $t_R = t_F = 2.5 \text{ ns}$, 10% to 90%; f = 1 MHz; $t_W = 500 \text{ ns}$

	Vcc					
Symbol	$3.3~\text{V}\pm0.3~\text{V}$	2.7 V	2.5 V ± 0.2 V			
Vmi	1.5 V	1.5 V	V _{CC} /2			
Vmo	1.5 V	1.5 V	V _{CC} /2			
V _{HZ}	V _{OL} + 0.3 V	V _{OL} + 0.3 V	V _{OL} + 0.15 V			
V _{LZ}	V _{OH} – 0.3 V	V _{OH} – 0.3 V	V _{OH} – 0.15 V			

Figure 3. AC Waveforms

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V at V_{CC} = 3.3 \pm 0.3 V 6V at V_{CC} = 2.5 \pm 0.2 V
Open Collector/Drain t _{PLH} and t _{PHL}	6V
t _{PZH} , t _{PHZ}	GND


 C_L = 50 pF at V_{CC} = 3.3 \pm 0.3 V or equivalent (includes jig and probe capacitance) C_L = 30 pF at V_{CC} = 2.5 \pm 0.2 V or equivalent (includes jig and probe capacitance) R_L = R_1 = 500 Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50 Ω)


Figure 4. Test Circuit

PACKAGE DIMENSIONS

TSSOP-48 **DT SUFFIX** CASE 1201-01 ISSUE A

SCALE 2:1

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

 6. DIMENSIONS A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	12.40	12.60	0.488	0.496	
В	6.00	6.20	0.236	0.244	
С		1.10		0.043	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.50	BSC	0.0197 BSC		
Н	0.37		0.015		
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.17	0.27	0.007	0.011	
K1	0.17	0.23	0.007	0.009	
L	7.95	8.25	0.313	0.325	
M	0 °	8°	0 °	8°	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center

4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 **Phone**: 81–3–5740–2700

Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.